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Abstract. The electric charging process, by bipolar ions, of nanometre-sized aerosol particles
undergoing simultaneous Brownian coagulation is examined. Two approximate analytical models,
valid for symmetrical charging and size-independent coagulation rate constant, are derived and
compared with the numerical solution of the rigorous population balance equations. For each
particle size, there exists an optimum mean aerosol residence time in the bipolar charging device
for which the output concentration of charged particles is a maximum. The optimum residence
time for the smallest particles is about one order of magnitude lower than the time required to attain
the charge equilibrium state. In practical situations, the maximum attainable number concentration
of charged particles is accordingly much lower than in equilibrium conditions.

1. Introduction

The gas-to-particle conversion process is becoming increasingly important to the preparation
of high-purity functional materials with special mechanical, optical, electric or magnetic
properties [1–3]. In this process, a supersaturated vapour phase of the precursor materials
is cooled down to promote nucleation. The nuclei thus formed subsequently grow by (a)
further vapour condensation onto their surface, and (b) Brownian coagulation between already
formed particles.

Depending on the order of magnitude of the size of the generated particles, a number of
methods are available to measure their size distribution. In the particle size range of a few
nanometres, the most accurate measuring technique to date is the electrostatic classification [4].
In this method, the aerosol particles must be previously charged, usually in a radioactive ionizer.
To avoid particle detection problems, it is desirable to have a concentration of charged particles
as high as possible at the outlet of the charging chamber. This goal becomes harder to achieve
for smaller particles, because of their higher wall deposition loss rate and lower charging
probability. Normally, the processes of charging and diffusion to the walls are accompanied
by Brownian coagulation, whereby a further loss of small particles occur.

The concentration and size of the charged particles exiting the charging chamber depend
on the aerosol residence time. Too short residence times result in few ion–particle collisions
and, hence, very low charging efficiency. As the aerosol residence time increases, charging
efficiency improves but, at the same time, the loss of small particles increases by diffusion to
the wall and Brownian coagulation. Clearly, for each particle size there exists an optimum
residence time which maximizes the output concentration of charged particles. In a recent
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experimental investigation [5] it has been shown that the optimum residence time for 2–3 nm
particles can be about one order of magnitude lower than the time required to attain charging
equilibrium.

Most of the work done in the coagulation field during the last several decades has been
devoted to finding the analytical solution of Smoluchowski’s equation for different forms
of the kernelKi,j (see, for instance, the recent papers [6–10] and references therein). In
contrast, very few investigations have addressed the problem of coagulation coupled with
other mechanism(s) of particle size distribution modification. The simultaneous consideration
of all the possible mechanisms affecting the aerosol dynamics (nucleation, condensation,
evaporation, coagulation, diffusion losses, charging, etc) results in the so-called general
dynamic equation (GDE) [11]. A number of authors have numerically solved the GDE
involving all or a part of the above cited mechanisms [12–17]. However, numerical methods
usually make difficult the evaluation of the relative importance of the mechanisms involved
and prevent a better physical understanding of the phenomena.

In this paper, the process of simultaneous charging and coagulation is first described
rigorously by means of the full population balance equations. The rigorous equations are then
simplified by the introduction of certain assumptions, leading to two analytical solutions which
are compared with the numerical rigorous solution.

2. Formulation of the problem

Consider a population of uncharged aerosol particles flowing through a cloud of bipolar
ions while undergoing Brownian coagulation. We will restrict ourselves to nanometre-sized
particles (<20 nm), for which the charging probability at equilibrium is less than about 0.01
[18], i.e. at most 1% of the uncharged particles become charged upon passing through the ion
cloud. This implies that the fraction of ions spent in particle charging is negligible and, hence,
one can assume that the ion number concentration remains constant through the process, and
equal to its equilibrium value. The equilibrium number concentration of ions can be calculated
upon knowledge of the ion generation rate by the radioactive source, the recombination rate
constant between ions of opposite polarity, and their wall deposition loss rate. In this type of
ionizer, the negative ions are usually more mobile than the positive ones and are accordingly
lost to the wall at a higher rate. Therefore, the equilibrium number concentrations of positive
and negative ions are different. However, normally this difference is not significantly large
and we will neglect it.

Another important feature of the charging of nanoparticles by collision with ions is that
the probability of multiple charging is vanishingly small, so that the nanometre-sized aerosol
particles leave the charging device with at most one net charge of either sign. In the rest of the
discussion, when we refer to charged particles we implicitly mean singly charged particles.

If charging is carried out just immediately after the particle generation process, the number
concentration of uncharged particles at the inlet of the charging chamber is normally very high.
In these conditions, diffusion losses to the wall are negligible in comparison with particle
number concentration decrease by coagulation.

The particle size will be expressed as the number of ‘monomers’ or minimal units the
particle is composed of. Denoting byuj , c+

j andc−j the number concentration of uncharged,
positive and negative particles, respectively, composed ofj monomers, the population balance
equations can be expressed as

duj
dt
= η+−

j Nc−j + η−+
j Nc+

j − η−0
j Nuj − η+0

j Nuj +
j−1∑
i=1

1

2
Ki,j−iuiuj−i
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+
j−1∑
i=1

K ′i,j−ic
+
i c
−
j−i −

∞∑
i=1

Ki,juj (ui + c−i + c+
i ) (1)

dc+
j

dt
= η+0

j Nuj − η−+
j Nc+

j +
j−1∑
i=1

Ki,j−iuic+
j−i −

∞∑
i=1

c+
j (Ki,jui +K ′i,j c

−
i ) (2)

dc−j
dt
= η−0

j Nuj − η+−
j Nc−j +

j−1∑
i=1

Ki,j−iuic−j−i −
∞∑
i=1

c−j (Ki,jui +K ′i,j c
+
i ). (3)

In the above equations,ηµνj is the attachment rate constant of an ion of polarityµwith a particle
of polarity ν and sizej , a superscript ‘0’ standing for neutral;N is the ion-pair equilibrium
number concentration;Ki,j is the coagulation rate constant for particles of sizesi andj in the
case where at least one of the colliding particles is uncharged; andK ′i,j is the coagulation rate
constant in the case that thei andj particles are charged with opposite polarity. Coagulation
between charged particles of equal polarity has been neglected because the corresponding rate
constant is extremely low.

Equations (1)–(3) must be solved with initial condition

uj = u0
j and c+

j = c−j = 0 at time t = 0 (4)

which express that at the charger inlet all the aerosol particles are neutral.
The coagulation rate constant in the free molecule regime (i.e. for nanometre-size aerosol

particles) is given by [19]

Ki,j = (3kT dm/ρ)1/2(i1/3 + j1/3)2
(

1

i
+

1

j

)1/2

(5)

wherek is Boltzmann constant,T the absolute temperature,dm the monomer diameter, andρ
the particle density. The latter is assumed independent of particle size.

The rate constant for the coagulation of charged particles of opposite polarity can be
calculated with the expression [20]

K ′i,j =
λi,j

1− exp(−λi,j )Ki,j (6)

with

λi,j = e2

2πε0kT dm(i1/3 + j1/3)
(7)

wheree is the elementary charge andε0 the dielectric constant of the medium (air), taken to
be that of a vacuum.

3. Approximate analytical models

In order to arrive at an analytical solution of the coagulation–charging process, some
simplifications are required. First, because of the low charging probability for nanometre
particles, most of the particles in the chamber are neutral ones. Therefore, the formation
of neutral particles through coagulation between charged particles of opposite polarity, and
the depletion of neutral particles by coagulation with charged ones, are both insignificant
in comparison with the formation–depletion of neutral particles by coagulation among
themselves. On the other hand, at most 1% of the uncharged particles are lost by charging.
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Accordingly, the time variation of the number concentration of uncharged particles can be
approximately expressed as

duj
dt
=

j−1∑
i=1

1

2
Ki,j−iuiuj−i −

∞∑
i=1

Ki,juiuj . (8)

Equation (8) simply describes the coagulation of uncharged particles, as if the presence of
ions and charged particles had no effect whatsoever. This approximation is only valid for
nanometre aerosol particles, with extremely low charging probability.

In practical situations, the mean aerosol residence time in the ionizer is less than 1 s, and
the inlet number concentration is usually less than 1016 m−3. In these conditions, the mean
particle volume of the aerosol leaving the ionizer is less than about 1.4 times the mean particle
volume at the chamber inlet. According to equation (5) the coagulation rate constant for equal-
sized particles is proportional toj1/6. Therefore, in a practical charging process the ‘average’
coagulation rate constant at the ionizer outlet is, at most, 6% larger than that at the inlet. This
justifies the use of a size-independent coagulation rate constant,K, so that equation (8) can be
further simplified to

duj
dt
= 1

2
K

j−1∑
i=1

uiuj−i −KUuj (9)

where

U =
∞∑
j=1

uj (10)

is the total number concentration of uncharged particles at timet .
To derive the corresponding equation for charged particles, we will first assume symmetric

charging, i.e. equal physical properties of positive and negative ions (in addition to the equal
concentration assumption already introduced in the preceding section). The assumption of
symmetric charging has two implications. First, the otherwise four different ion attachment
coefficients are reduced to just two, one for charging of neutral particles(η+0

j = n−0
j ≡ ηCj ),

the other for neutralization of charged particles(η+−
j = η−+

j ≡ ηNj ). Second, the concentration
of positive and negative particles are equal throughout the process,c+

j = c−j ≡ cj . As a
further approximation, we will neglect coagulation effects for charged particles. This is not,
however, a justified assumption, because the formation–depletion rate of charged particles
through collisions with uncharged ones can be of the same order of magnitude as the charging
rate terms. Comparison with the results obtained from numerical solution of the rigorous
equations (1)–(3) will show that, in spite of its lack ofa priori justification, this assumption is
fairly valid.

With these considerations, the simplified population balance for charged particles of either
polarity can thus be expressed as

dcj
dt
= ηCj Nuj − ηNj Ncj . (11)

Equations (9) and (11) are the proposed simplified population balance equations to describe
the process of charging of a coagulating nanometre aerosol. Equation (9) can be solved
independently because the concentration of charged particles,cj , does not appear in it. Once
theuj (t) are known, thecj (t) can be found by integration of (11). In words, we are assuming
that the presence of ions and charged particles does not affect the growth of neutral particles
by coagulation. Secondly, we treat the charging process in a conventional way, except that the
size distribution of neutral particles is varying with time due to coagulation.
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3.1. Analytical solution for uncharged particles

Summing up equation (9) over all the particle sizesj , and recalling the definition (10), the
global population balance for uncharged particles becomes dU/dt = − 1

2KU
2. Hence,

U = U0

1 + 1
2KU

0t
(12)

whereU0 = ∑∞
j=1 u

0
j is the total aerosol number concentration at the ionizer inlet(t = 0).

With the help of (12) the solution of (9) can be written as

uj = (U/U0)2
[
u0
j +

∫ t

0

1

2
K(U/U0)−2

j−1∑
i=1

uiuj−i dt

]
. (13)

The concentration decrease with time for uncharged monomers(j = 1) is readily computed
from (13) because, in this case, the integral vanishes. Thus

u1 =
(
U

U0

)2

u0
1 =

u0
1(

1 + 1
2KU

0t
)2 . (14)

The concentration of monomers decrease as 1/t2, while the total concentration decreases as
1/t : monomers are lost much faster than the total population as a whole. For the discussion
that follows it is convenient to express the concentrations in dimensionless form, by referring
them to the initial total concentration of aerosol particlesU0 (u∗j ≡ uj/U

0, etc). (14) then
becomesu∗1 = (U ∗)2u0∗

1 . Once the solution for monomers has been found, one can easily
obtain the solution for dimers(j = 2):

u∗2 = (U ∗)2[u0∗
2 + (u0∗

1 )
2(1− U ∗)]. (15)

Similarly, the solutions for the following values ofj are found to be

u∗3 = (U ∗)2[u0∗
3 + 2u0∗

1 u
0∗
2 (1− U ∗) + (u0∗

1 )
3(1− U ∗)2] (16)

u∗4 = (U ∗)2{u0∗
4 + [(u0∗

2 )
2 + 2u0∗

1 u
0∗
3 ](1− U ∗) + 3(u0∗

1 )
2u0∗

2 (1− U ∗)2 + (u0∗
1 )

4(1− U ∗)3}
(17)

u∗5 = (U ∗)2{u0∗
5 + 2(u0∗

1 u
0∗
4 + u0∗

2 u
0∗
3 )(1− U ∗) + 3[u0∗

1 (u
0∗
2 )

2 + (u0∗
1 )

2u0∗
3 ](1− U ∗)2

+4(u0∗
1 )

3u0∗
2 (1− U ∗)3 + (u0∗

1 )
5(1− U ∗)4}. (18)

In this manner one can proceed to find the solution up to any desired value ofj . However,
from the above equations for small values ofj we can understand the way in which the
solutions are constructed, so that for largerj there is no need to solve (13) for each of the
(j − 1) precedingu∗j . All the solutions consist in(U∗)2 multiplied by a certain number of
terms. Each of these terms contains the time-dependent factor(1− U∗)m, wherem is the
number of collision steps in succession required to yield a particle of sizej . As an example,
consider the term 3[u0∗

1 (u
0∗
2 )

2 + (u0∗
1 )

2u0∗
3 ](1−U ∗)2 appearing in (18). The factor(1−U∗)2

corresponds to a two-step collision process. There are two different two-step processes by
which particles of sizej = 5 can be formed: one involves two dimers and one monomer,
hence the termu0∗

1 (u
0∗
2 )

2, and the other involves two monomers and one trimer, represented
by the term(u0∗

1 )
2u0∗

3 . These two terms must be multiplied by the factor three, the number of
particles participating in each of the two-step processes, because one must also consider the
order in which collisions occur. In contrast, the last term in (18),(u0∗

1 )
5(1− U ∗)4, which is a

four-step collision process, involves only one type of particles (monomers in this case), hence
the order in which collisions occur is irrelevant and this term must be counted only once.
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Consequently, the general solution for coagulation with size-independent rate constant
can be expressed thus

u∗1
(U ∗)2

− u0∗
1 = 0 (j = 1) (19a)

u∗j
(U ∗)2

− u0∗
j =

j−1∑
i=1

u0∗
i u

0∗
j−i (1− U ∗)

+
j−2∑
i=1

j−(1+i)∑
k=1

u0∗
i u

0∗
k u

0∗
j−(i+k)(1− U ∗)2

+
j−3∑
i=1

j−(2+i)∑
k=1

j−(1+i+k)∑
l=1

u0∗
i u

0∗
k u

0∗
l u

0∗
j−(i+k+l)(1− U ∗)3

+
j−4∑
i=1

j−(3+i)∑
k=1

j−(2+i+k)∑
l=1

j−(1+i+k+l)∑
m=1

u0∗
i u

0∗
k u

0∗
l u

0∗
m u

0∗
j−(i+k+l+m)(1− U ∗)4

+ · · · + (u0∗
1 )

j (1− U ∗)j−1 for j > 1. (19b)

A specially simple solution is obtained when at timet = 0 (ionizer inlet) there are only
monomers, that is, whenu0

1 = U0 andu0
j>1 = 0. In this case, (19) is reduced to the simple

form

u∗j = (U ∗)2(1− U ∗)j−1 for j = 1, 2, . . . ,∞ (20)

or in dimensional form

uj = U2

U0

(
1− U

U0

)j−1

for j = 1, 2, . . . ,∞ (21)

where the total aerosol number concentrationU at time t is given by (12). Equation (21),
which was first obtained by Smoluchowski [21], is then the solution to the coagulation process
for an initially monodisperse aerosol.

3.2. Analytical solution for charged particles—model I

The solution to the first-order linear differential equation (11) with initial conditioncj = 0 at
t = 0 is

cj = NηCj exp(−NηNj t)
∫ t

0
uj exp(NηNj t) dt. (22)

To solve the general case, one should insert (19) into (22) and perform the integration. We
will, however, restrict ourselves to the simple case in which the aerosol consists of monomers,
so that the concentration of uncharged particles at timet is given by the much simpler equation
(21). Inserting (21) into (22), making the substitutionx = 2NηNj /KU , and applying the
binomial theorem, the last equation can also be rewritten as

cj = U0
ηCj

ηNj
exp

(
−2NηNj
KU

)
j−1∑
m=0

(−1)m(j − 1)!

(j −m− 1)!m!

(
2NηNj
KU0

)m+2

×
∫ 2NηNj /KU

2NηNj /KU
0
x−(m+2) exp(x) dx.

In the exponential term before the summation, as well as in the upper limit of the integral,
appears the factorNηNj /KU , which represents the ratio of neutralization rate to coagulation
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rate at timet for a particle of sizej . Similarly, the factorNηNj /KU
0 appearing in the lower

limit of the integral is the ratio of neutralization to coagulation rate at timet = 0.
Expanding exp(x) in a power series and integrating term by term, the solution for singly

charged particles of either polarity can be finally written as

cj = U0
ηCj

ηNj
exp

(
−2NηNj
KU

)
j−1∑
m=0

(−1)m(j − 1)!

(j −m− 1)!m!

(
2NηNj
KU0

)m+2

×


ln
(
U0

U

)
(m + 1)!

+
∞∑
s=0
s 6=m+1

(
2NηNj
KU

)s−m−1
−
(

2NηNj
KU0

)s−m−1

s!(s −m− 1)

 . (23)

The time dependency ofcj is included inU , the total number concentration of uncharged
particles given by (12). Equation (23) is the rigorous solution to the simplified model expressed
by equation (11). This solution will be referred to as ‘Analytical I’, to distinguish it from a
still simpler solution to be derived next.

3.3. Analytical solution for charged particles—model II

In the second approximate analytical model, the simultaneous coagulation and charging process
is idealized as a two-step process. First, uncharged aerosol particles are let to coagulate in
a coagulation chamber with no ionizing source in it. The size distribution of the uncharged
particles leaving the coagulation chamber is still given by (21) in the case that the aerosol
population initially consisted of monomers alone. Next, the coagulated particles are admitted
into a second chamber where ions are being continuously generated by a radioactive source. In
the charging chamber the aerosol is not allowed to coagulate any further and, hence, because
of the extremely low charging probabilities, the concentration of uncharged particles,uj , can
be assumed to be constant.

The solution to this idealized process is simply given by (22) with the particularity that
uj can be taken out of the integral sign. Thus we find

cj =
ηCj

ηNj
uj [1− exp(−NηNj t)] (24)

whereuj is given by (21). The simple solution (24) will be referred to as ‘Analytical II’.

4. Mean particle size

The mean size of uncharged particles,Jum, can be determined as

Jum =
∑∞

j=1 juj∑∞
j=1 uj

= 1

U

∞∑
j=1

juj ≈ U0

U
= 1 +

1

2
KU0t (25)

because the concentration of uncharged particles is much larger than that of charged particles.
Similarly, for the mean size of charged particles and using the Analytical II solution, one

finds

Jcm =
∑∞

j=1 jcj∑∞
j=1 cj

=
∑∞

j=1
ηCj

ηNj
juj [1− exp(−NηNj t)]∑∞

j=1
ηCj

ηNj
uj [1− exp(−NηNj t)]

. (26)

Because of the presence of the size-dependent attachment coefficientsηj , it is not possible to
arrive at an analytical expression for the mean size of charged particles. Equation (26) will
anyway be compared with the results of the rigorous numerical solution.
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5. Optimum aerosol residence time in the charger

The optimum residence time for particles of sizej is defined as the time at which their
concentration is a maximum. This can be determined analytically for uncharged particles
using equation (21) of the approximate model. Differentiating (21) with respect to time and
setting to zero yields

tu,opt (j) = j − 1

KU0
. (27)

Therefore, the optimum residence time for neutral particles is proportional to the particle
volume and inversely proportional to the coagulation rateKU0.

It is not possible to arrive at an analytical expression for the optimum residence time
for charged particles. However, an inspection of (24) shows that, if the ion-pair number
concentrationN is not too low, the exponential factor practically vanishes after very short
residence times. Thus, except in the very early stages of the process, we havecj ≈ (ηCj /ηNj )uj
and hence,

tc,opt (j) ≈ tu,opt (j) = j − 1

KU0
. (28)

This last equation indicates that the optimum residence time for charged particles is completely
controlled by Brownian coagulation; charging itself plays no role. It must be pointed out that
(28) is not valid for charged monomers(j = 1). Indeed, according to (28) the optimum
residence time for charged monomers is zero, which is not true because at timet = 0 there
are no charged monomers at all! For other, but not too large, values of the particle sizej ,
equation (28) gives results in fair agreement with those obtained by the rigorous numerical
model, as will be shown below.

6. Calculation procedure

6.1. Evaluation of ion attachment rate coefficients

The ion attachment rate coefficientsηµνj were calculated using Fuchs theory [22] as recently
reviewed by Reischlet al [23], using ion electric mobilitiesZ+ = 1.15 × 10−4 and
Z− = 1.65× 10−4 m2 V−1 s−1, and ion massesm+ = 150 andm− = 80 amu. These
are typical values for air ions generated in the radioactive ionizers commonly used in aerosol
research [24]. To reduce the computing time the ion attachment coefficients were fitted by
polynomials of the form

η
µν

j = 10−15
5∑
i=0

a
µν

i (dm)
i(j)1/3 (29)

whereηµνj is expressed in m3 s−1 and the monomer diameterdm in nm. The constantsaµνi
given in table 1 are valid for the particle size range 1–25 nm.

6.2. Rigorous solution

The rigorous population balance equations (1)–(3) with initial condition (4) were solved
numerically using a simple forward integration scheme, with a time step of 0.001 s, and
maximum size ofj = 150. Total aerosol mass conservation was fully satisfied up to times
between 1 and 2 s (depending on the specific initial aerosol concentration). At longer times,
the total mass decreased gradually because concentrations of newly formed particles of size
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Table 1. Values of the constantsaµνi for the evaluation of the ion attachment rate coefficients
(equation (29)).

i → 0 1 2 3 4 5

a+0
i −2.7680 3.6247 0.4294−0.0052 0 0

a−0
i −3.9515 5.0171 0.5992−0.0076 0 0
a+−
i 455.20 381.13 −55.20 3.93 −0.13 0.0018
a−+
i 256.77 350.16 −31.12 1.30 −0.02 0

larger than 150 monomers were not stored in memory. In all the cases reported below, the
mass loss at the end of the calculation was always less than 10%.

6.3. Approximate solutions

In order to use the approximate analytical expressions (21), (23) and (24), we have first to
assign a value to the size-independent coagulation rate constantK. It has been decided to take
the value ofK which best reproduces the numerically-calculated time variation of the mean
sizeJum of uncharged particles. According to (25), a plot ofJum against time should yield a
straight line from whose slope one can determine the coagulation rate constantK. Such a plot
is shown in figure 1 for different values of the initial concentrationU0 of uncharged monomers
of sizedm = 2 nm. The data points are mean sizes calculated with the numerical model. The
lines are the best fittings to the numerical data using (25). The numerical calculations show
that the mean size of uncharged particles is not exactly a linear function of time as suggested
by (25), but it is very nearly so. The values ofK obtained from the slope of the fitting lines
will be used throughout the rest of the discussion. Using equation (5) withi = j , it is found
that the values ofK obtained from the fittings (see caption of figure 1) correspond to particle
sizes ofj ≈ 2, 5, 6 and 12 for initial aerosol concentrationsU0 of 1015, 5× 1015, 1016 and
5× 1016 m−3, respectively.

It must be noted that in a practical case one does not knowa priori which is the value
of K that would reproduce best the rigorous numerical solution, unless one solves previously
the numerical model! However, it must not be forgotten that the purpose of this paper is
to assess the validity of the simple approximate solutions derived above. As will be shown
below, the approximate equations give fairly good results provided an appropriate value of the
coagulation rate constantK is chosen. The selection of the appropriate value ofK without the
need to solve previously the full population balance equations should be the subject of further
research.

7. Comparison between numerical and analytical solutions

Figures 2 and 3 show the comparison between numerical calculations and the two analytical
solutions, for two different initial number concentrations of uncharged monomers. For
uncharged particles (figures 2(a) and 3(a)) there is only one analytical curve because
equation (21) is common to Analytical I and Analytical II models. As seen, the approximate
analytical solutions reproduce reasonably well the numerical data. Considering the drastic
assumptions under which the analytical solutions have been obtained (size-independentK

and, specially, the non-inclusion of gain-loss terms due to coagulation between charged and
uncharged particles) the agreement between numerical and approximate solutions is quite
good. It is also striking that Analytical II gives better results than Analytical I despite the fact
that the former is still a less rigorous approach.
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Figure 1. Variation with time of the mean size of uncharged particles for different initial monomer
concentrations. Monomer diameterdm = 2 nm; ion-pair number concentrationN = 2×1013 m−3.
From the slopes of the fitting lines, the size-independent coagulation rate constantsK were
determined to be 6.92× 10−16, 8.20× 10−16, 8.38× 10−16 and 9.36× 10−16 m3 s−1 for initial
monomer number concentrationsU0 of 1015, 5× 1015, 1016 and 5× 1016 m−3, respectively.

In summary, we can conclude that the simple equations (21) and (24), although
approximate, describe very well the process of simultaneous coagulation and charging of
nanometre aerosol particles, provided a suitable value is chosen for the size-independent
coagulation rate constantK.

Figure 4 shows the comparison between numerical and analytical mean size of charged
particles for different initial monomer concentrations. The numerical mean size has been
evaluated using the numerically calculated concentrations of negatively charged particles.
Again, the matching between the rigorous and approximate approaches is quite good.

Figure 5 shows the practically insignificant effect of the ion-pair number concentration
N on the particle size growth with time. This figure also serves to compare the mean sizes
of charged and uncharged particles. The mean size of charged particles is always larger than
that of uncharged particles; the reason is simply that the charging probabilityηCj /η

N
j increases

with particle size.
The optimum residence time in the ionizer is plotted in figure 6. It is seen that the

predictions using the approximate equation (28) are in reasonable agreement with the numerical
calculations except for large values of particle size and initial monomer number concentration.
Also, the numerical calculations show that the optimum residence time is practically the same
for charged and neutral particles, in agreement with (28).

Finally, it must be mentioned that the rigorous model (1)–(4) has already been successfully
tested with experiments [5]. Moreover, these experiments showed that the optimum residence
time for very small particles (2–4 nm) in the charging device was less than 0.05 s, which is one
order of magnitude smaller than the time required to attain the aerosol charging equilibrium
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Figure 2. Comparison between numerical and approximate analytical solutions for (a) uncharged
and (b) negatively charged particles. Monomer diameterdm = 2 nm; ion-pair number concentration
N = 2 × 1018 m−3; initial monomer number concentrationU0 = 1015 m−3. In this and the
following figures, the size-independent coagulation rate constants for analytical solutions are the
same as in figure 1.
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Figure 3. Comparison between numerical and approximate analytical solutions for (a) uncharged
and (b) negatively charged particles. Monomer diameterdm = 2 nm; ion-pair number concentration
N = 2× 1013 m−3; initial monomer number concentrationU0 = 1016 m−3.
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Figure 4. Variation with time of the mean size of charged particles as a function of the initial
monomer number concentration. Ion-pair number concentrationN = 2× 1013 m−3.

Figure 5. Variation with time of the mean size of charged and uncharged particles as a function of
the ion-pair number concentration. Data points: numerical. Lines: Analytical II (equations (25)
and (26)). Initial monomer number concentrationU0 = 1016 m−3.
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Figure 6. Optimum residence time as a function of the initial monomer number concentration.
Ion-pair number concentrationN = 2× 1013 m−3.

state. This further implies that the maximum attainable concentration of charged particles is,
in practice, lower than the equilibrium concentration.

8. Conclusions

The charging process of a coagulating nanometre aerosol has been described by a simplified
analytical model, expressed by equations (21) and (24), using a suitably chosen size-
independent coagulation rate constant, and neglecting coagulation between charged and
uncharged particles. The analytical solution is in good agreement with the rigorous solution
obtained by numerical integration of the population balance equations. The optimum residence
time for charged particles is controlled by Brownian coagulation and, as a consequence, is
proportional to the particle volume and inversely proportional to the coagulation rate.
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